
1

FC6P01 Final Project

Pretty Terrain
3D Terrain Development Software

Interim Report

Student: Kim Kane

Student ID: 15021826

Course: BSc Computer Games Programming

Module Leader: Fiona French

Module: FC6P01 Final Project Student ID: 15021826

2

Contents
Introduction..3

Project Concept..3

Project Goal..4

Aims and Objectives..5

Project Aims..5

Project Objectives...6

Deliverables...11

Prioritised deliverables...11

Additional features...11

Background...13

Work to date...17

Past Research ..17

Development...22

Challenges..32

Time Management...33

Remedial Plan..34

References...35

Module: FC6P01 Final Project Student ID: 15021826

3

Introduction

Project Concept
For my dissertation I have decided to develop a 3D terrain creation tool,
to be used in conjunction with my own game engine. This tool will allow
the user to generate 3D terrain procedurally[1] or by using heightmaps[2].

Example of World Creator[3], a popular terrain generation tool created by 3D
software development company BiteTheBytes.

The software will work in conjunction with my own game engine, The
Pretty Engine, built using the SDL2[4] and OpenGL[5] API's (application
programming interface).

Pretty Terrain will be a user-friendly tool to create, modify and save open-
world 3D terrain, which can then be easily loaded into a game. The
software will support heightmaps[2] (designed) and procedural[1]
(randomized) terrain generation primarily.

Module: FC6P01 Final Project Student ID: 15021826

4

The user will create their desired 3D terrain using the software. Once
they are happy with the terrain they create, they can save the terrain
data to a file, which can then be easily loaded into their game.

Similar to the 3D model import library, Assimp[6], the user will have access
to the internal data of the terrain. This will enable them to modify or
manipulate the terrain data further, through programming.

Project Goal
I chose to focus on terrain generation for my dissertation, as I thrive to be
a Level Designer. I discovered I had a passion for this area specifically, in
my second year at London Metropolitan University.

Although terrain generation is not strictly Level Design, I believe it is
important that I discover, research and learn as much as possible in this
area. This will increase my knowledge on how levels are developed as a
whole and will aid my success in future career prospects.

I wish to showcase my software on my portfolio. I will provide complete
source code and documentation on the software, as well as tutorials and
articles on the development process. This will appeal to future potential
employers, but it will also serve as a great resource for other Game
Developers and Level Designers.

Module: FC6P01 Final Project Student ID: 15021826

5

Aims and Objectives

Project Aims
 To show potential employers my versatility. Rather than being

pinned as a programmer, I wish them to see I have a good eye for
detail, a knack for design and that I specialise in something, in
retrospect this will broaden my horizons.

 Prior to developing the terrain software, I will first finish my own
game engine. Once I have finished my game engine and have all
necessary aspects covered and in good working order, I will then
develop the terrain software using my engine. This should make the
development process of my terrain software extremely quick, easy
and non-repetitive.

 I am a perfectionist when it comes to designing and creating levels –
I wish to showcase this and generate beautiful open-world realistic
environments, where I am able to show my level design skills, but
also my understanding of how levels in games are generated.

 I am passionate about level design, but also helping people and wish
to learn as much as I can about the field, so that I can help other
games developers in future.

 I enjoy graphics programming and enjoy creating new, interesting
effects that can really show off my environments, such as: skyboxes,
ground fog, rain, sunrise/sunset effects, lens flare, shadows, etc. I
wish to showcase this also – I thrive to make environment's look
beautiful to the user and improve their overall experience of the
game.

Module: FC6P01 Final Project Student ID: 15021826

6

A screenshot of the open-world terrain from the game ARK: Survival Evolved.
Environmental effects can vastly compliment terrain.

Project Objectives

LO1: To obtain a full understanding on how terrain is generated in
games.
Optimization is important in generating open-world terrain. Small terrain
can be rendered as-is, however larger terrain rendering can cause the
game to slow down. This is due to the vast amount of vertices[7] being
rendered at once. In order to accomplish large terrain being rendered,
without the game slowing down (lagging), I need to fully understand how
to break the terrain up into small sections and only render small blocks of
terrain at a time (only what the user can see). There are many ways to
achieve this, I have discovered, but my aim is to find the best, most
practical method for this project, so there will be a vast amount of
experimenting and unit tests. This is the most important task, as without
optimization the terrain will not render.

Module: FC6P01 Final Project Student ID: 15021826

7

Quad-tree's[8] can be used to break the terrain up into small chunks. They
are relatively fast and simple to code. I used a quad-tree the first time I
generated a terrain using a heightmap[2].

An example of a terrain quad-tree being generated.

Image from RasterTek Tutorial 5: Quad-tree's[9].

Quad-trees work in conjunction with frustum culling[10]. Frustum culling is
the method of only rendering that which can be seen within the viewport.

The image above shows how frustum culling is achieved.
Everything within the view frustum is rendered and anything outside it is not.

Image credits: https://rhiannongriffiths.wordpress.com/2012/10/11/game-platforms

Module: FC6P01 Final Project Student ID: 15021826

8

Occlusion culling can be used in conjunction with frustum culling to
further improve performance and speed of rendering. Where frustum
culling culls whole objects, occlusion culling culls specific vertices[7] (think
of an object hidden behind another object). I will use OpenGL's built-in
occlusion queries[11] to implement occlusion culling for this project.

Using just a quad-tree to render terrain would not be enough. As the
terrain grows in size, we have to think about the level of detail of the
terrain from the camera's location to the far (clipping) plane.

This is vital, as terrain being rendered with extensive detail through-out
will counteract the optimization we achieved when using a quad-tree.

To resolve this, we can use Node-Based LOD (Level of Detail) in
conjunction with quad-trees.

An example of how node-based LOD may look once generated.

Image from RasterTek Tutorial 18: Large Terrain Rendering[12].

The basis of node-based LOD is that the terrain nodes closest to the
camera will be rendered in high detail. The level of detail of the terrain

Module: FC6P01 Final Project Student ID: 15021826

9

will decrease depending on the distance of the terrain nodes from the
camera.

A complete planetary scale LOD terrain generation video example can be
seen at LeifNode.com[13].

Background (Daemon)[14] threads are used in conjunction with node-
based LOD for fast loading and unloading of nodes.

LO2: To learn about procedural[1] terrain and write an algorithm that
generates terrain randomly.

Image above shows a terrain that has been procedurally generated.
Image credits: https://sainarayan.me/2015/05/13/procedural-terrain-generation-using-perlin-noise-and-machine-

learning

Unlike heightmaps[2], procedural terrain is created via programming
through the use of an algorithm. In terms of terrain, it is the method of
interpolating the vertices of the terrain mesh, allowing the user to be in
full control over the overall shape of terrain (flat, mountainous, rugged,
smooth).

Procedurally generated terrain allows for terrain randomization, tiled
terrain and in more advanced algorithms it can be used to distinguish the
correct placement of roads, streams, oceans, etc. I will keep my
algorithm simple, as I am only interested in generating random terrain.

Module: FC6P01 Final Project Student ID: 15021826

10

LO3: Understand how to create my own images through programming.
I hope to give the user the option to save the terrain data they generate
to a heightmap[2] gray-scale image file. For this I will need to learn about
saving vertex data to a file, converting it into pixel data and so on. It
sounds simple, but with image headers, compression, etc. taken into
account, it can be quite a complex procedure.

LO4: Understand and create a robust UI with user controls.
I hope to give the user the option to edit the vertices of the terrain in
real-time (similar to the Computer Animation and Modelling Software,
Maya[15]). For this, I will need to understand ray-casting[16] so I can project
a ray into the screen using the mouse and know when the mouse is
hovered over a particular vertex. I also need to think about undo/redo
options.

LO5: Create my own parser for the terrain files generated.
I will use the serialization library, Cereal[17], for this specifically, but I need
to create a wrapper class that parses the data correctly and efficiently.
This will give me full control over what internal terrain data is saved and
will be structured in such a way that the user can edit the file outside of
the program. I wish to give the user ample control over their terrain.

LO6: Obtain a full understanding of graphics effects used most
commonly in 3D games to enhance the environment.
Including ground fog, water, weather, post-processing (for minimaps),
environmental factors i.e. wind, clouds, atmosphere, etc. This is so I can
showcase the project in a polished way. I want my project to be fast and
stable but I also want it to look appealing to the user.

LO7: Completely understand design patterns[18] and write re-usable
code.
This will make it easier for me to update or modify code, if I decide to add
or change anything inside my project.

Module: FC6P01 Final Project Student ID: 15021826

11

Deliverables
Prioritised deliverables

 The sole purpose of my terrain generation software is to provide an
easy-to-use tool that allows for 3D terrain generation, for games
developers, specifically level designers.

 The user interface (UI) will be robust, user-friendly and extremely
simple. The programming knowledge required of the user will be
minimal.

 The software will support procedural[1] and heightmap[2] terrain
generation, through the use of algorithms and serialization.

 The terrain will be a maximum size of 4096 x 4096 pixels and be
fully optimized. I will achieve this by breaking the terrain up into
smaller chunks and make use of frustum culling[10], occlusion
culling[11] and quad-trees[8].

 The terrain file will include collision data. This will allow the user to
check for collision against the terrain easily. I will provide a function
that checks for collision, using a popular formula known as
Barycentric[19].

 The retrieval of terrain data will work in the same way as the
Assimp[6] library. Assimp retrieves model data from a file and stores
this data into containers (array's). The user can then access all the
data relevant to the model, e.g. normals[20], texture coordinates[21],
etc. I really like this design and believe it to be the easiest option for
the user.

 The terrain software will be extremely fast. I am currently running
many unit tests and keeping track of my frame rate, as I do not want
the terrain software to lag.

Additional features
 I would like to include texture data within the terrain file. The user

can load in a blendmap[22], as well as terrain textures and this
information is also stored within the output file – allowing them to
retrieve it easily.

Module: FC6P01 Final Project Student ID: 15021826

12

 I would like to include image generation within the software. I wish
to learn how to create a heightmap image through procedural
terrain, as I believe this will be a nice additional feature.

 I would like to provide the user with singular or multi vertex[7]
selection – allowing them to drag vertices around and adjust the
mesh of the terrain in real-time.

 I would like to have a more advanced user interface (UI) –
redo/undo buttons, paint tools, mesh editing tools, etc.

 I would like to incorporate shader effects so the user can see how
the terrain would look under specific light.

Module: FC6P01 Final Project Student ID: 15021826

13

Background
I began building the terrain software in June 2018 and have been working
on it since. The software works in conjunction with my own game engine,
which I began developing in September 2017.

When I first began developing my game engine, I managed to generate an
open-world terrain using a heightmap[2], complete with a blendmap[22],
diffuse textures and normal textures for lighting.

A screenshot of my first ever terrain generated using my game engine in 2017. I
used a heightmap to generate the terrain. My engine was very basic at this point.

Module: FC6P01 Final Project Student ID: 15021826

14

A screenshot of an OpenGL game I built using my game engine in 2018. Notice how
my emphasis was on the terrain, minimap and environmental effects. You may see

fog and a directional light imitating the shine from the moon.

The blendmap (left) and heightmap (right) I used to generate the above terrain.

Module: FC6P01 Final Project Student ID: 15021826

15

The diffuse texture (left) and the normal map (right) I used for the terrain's
background texture.

This texture covered the blue areas of the blendmap.

I calculated my own normals[20], tangents and bi-tangents[23] (necessary
when using normal maps for lighting) and researched the Barycentric[19]
formula in-depth for terrain collision.

Image above shows my formula for calculating normals using the Finite Difference
Method[24] (a fast way to calculate normals, very popular in terrain generation).

Module: FC6P01 Final Project Student ID: 15021826

16

The image above shows how I calculated tangents and bi-tangents for a terrain
mesh.

The image above shows the Barycentric formula I wrote in its plainest form. This
formula is the simplest way to check for collisions against the terrain.

Module: FC6P01 Final Project Student ID: 15021826

17

Since I have tapped into terrain generation, my passion to learn about it
has grown. I have been researching terrain and level design for a couple
of years now and I believe I am at a stage where I feel confident enough
to build a software program around this.

Work to date
It is vital that I complete development of my game engine prior to
building the terrain software. I am making good progress with my engine
and already have the most important aspects I will need for this project
covered and in good working order, these are covered below.

Past Research

Terrain Optimization

I have discovered that the fastest way to render terrain is by using quad-
trees[8] in conjunction with node-based LOD[12], OpenGL's built-in
occlusion queries[11] and frustum culling[10]. This will speed up rendering
massively, as occlusion queries disable vertices from being rendered if
they are not within view or behind other objects. Frustum culling will add
additional optimization as it will check the bounding boxes of the terrain
prior to each and every vertex, reducing the number of checks being done
per frame. Quad-trees combined with node-based LOD make for an
extremely fast optimization technique, used to allow rendering of large
terrain.

Batch Rendering

I have found a way to render unlimited textures to the scene extremely
fast. By using a batch renderer[25], I will give full control of graphics
rendering to the shader[26], allowing me to render unlimited textures per
frame. A terrain can have multiple textures and to achieve this I use a

Module: FC6P01 Final Project Student ID: 15021826

18

blendmap[22] to distinguish where on the terrain to render the other
textures. Blendmaps are extremely useful for pathways and roads, etc.

An example of a blendmap. RGBA (red, green, blue and alpha) colour values of
blendmap are used to determine where the terrain textures will be placed.

Image credits: https://www.cc.gatech.edu/projects/large_models/ps.html

With one blendmap in place, a terrain can have up to four textures,
blended together via the fragment shader to create smooth interpolation
between textures. Each texture of the terrain uses the RGBA colour's
located on the blendmap to distinguish where it is placed.

Image above shows terrain texture example. Each texture (commonly named base,
red, green and blue) will be rendered at its matching colour value on the blendmap.

Without batch rendering, I would be limited to four textures per terrain.
If I implement batch rendering successfully, I could potentially have
multiple blendmaps and multiple textures.

Module: FC6P01 Final Project Student ID: 15021826

19

Multi-threading and Daemon Threads

Daemon threads[14], or background threads, will be necessary for fast
terrain LOD generation. I have discovered that these are most useful
when running background processes. Daemon threads can also be used
for loading screens, or even file dialogs. When the user opens the file
dialog in the terrain software, they can still edit their terrain in real time.
With use of daemon threads, I could accomplish extremely fast loading
times and allow the user to work on multiple things at once. I have to be
sure I implement them correctly however, or I run the risk of severe
program crashes. For this to be successful I would need to keep a
reference count[27] (similar to that used in shared pointers[28]) of all
daemon threads currently active/running and only once they have
finished will I shut down the main program.

Heightmap Generation

I have done a great amount of research into heightmap[2] generation and
thus far have created two games with 3D mountainous terrain by using
heightmap's. Heightmap's are a greyscale power of two (e.g. 512 pixels in
width and 512 pixels in height) image. The colour values in a heightmap
are used to determine the height of the terrain. Completely black areas
will render flat terrain, whereas bright white areas will render mountains.
The colour values in-between are interpolated, giving a smooth and
realistic looking terrain mesh. Heightmap's work extremely well if you
want a quick, fast terrain without writing an algorithm. I discovered that
PNG's[29] work best (BMP's are far too large) - no compression is lost and
you get the added bonus of having an alpha channel, should you want the
terrain to have transparency (great for levels that are floating mid-hair).

Module: FC6P01 Final Project Student ID: 15021826

20

The image above shows a terrain being rendered using a heightmap. The
heightmap (left) was modified and altered to fit the game I was making at the time.
You may already see a small pathway beginning to take shape in the terrain image

(right).

Procedural Terrain Generation

I have found many algorithms online on how to procedurally generate
terrain and so I am comfortable this will be a fairly simple task. My
favourite algorithm and the one I have decided to use as a basis, is that by
games developer ThinMatrix[30]. The only time procedural terrain, in my
opinion, becomes more complicated than heightmap's is when you want
specific randomisation to occur. For example, if you have a lake in your
game, you must make sure you have an algorithm in place so that all lake
tiles are placed together, and then maybe interpolate smoothly into the
grass tiles. For my terrain software however, I am only interested in
generating random terrain.

Module: FC6P01 Final Project Student ID: 15021826

21

Barycentric Coordinates

I spent a vast amount of time researching the best way to handle terrain
collision. As most open-world terrains are hilly and unpredictable, I need
to check every frame where the player has moved to on the terrain and
update the players height (i.e. where they are standing) accordingly, so
they don't fall through the terrain. A great, fast and easy way of doing
this is by using a formula known as barycentric[19][31]. I wrote the formula
out by hand, so I could fully understand how it works. In simplistic terms,
the formula allows me to find an exact point on a triangle. In terms of
terrain, the point on this triangle (within the terrain mesh) would then be
the player's new height and this would be updated every frame.

The image above shows my research into the barycentric formula. I wrote it out by

hand based on the information found on 2000clicks.com[32]. This was my way of
fully understanding one method of terrain collision.

Module: FC6P01 Final Project Student ID: 15021826

22

Development
Serialization

I needed serialization[33] to be present in my engine to enable me to load
and save user-created terrain files. The added advantage of
implementing serialization, is that I can use it for everything in my engine.
The benefit of this is that a vast amount of work is done externally,
without changing any code, compile times are much quicker and the risk
of error is minimal.

Image above shows my file management system loading the attributes for the SDL
window. It is one line of code for pure simplicity.

I have implemented a strong file management system that uses the light-
weight C++ serialization library known as Cereal[17].

Module: FC6P01 Final Project Student ID: 15021826

23

My game engine now supports fully working serialization. I am able to
use JSON[34], XML[35] and binary[36] files to load and save data. This will be
extremely useful for me when I come to write my own terrain parser.

I managed to find a nice, neat way to save and load the data by storing it inside of a
C++ struct. The struct is pre-fixed with “sr”, so the user knows it can be serialized.

A JSON file storing the SDL window attributes. Data-driven design[37] is now active
throughout my entire engine, no data is contained in my code.

Module: FC6P01 Final Project Student ID: 15021826

24

File Dialogs

I implemented open and save file dialogs using ImGui[38] and the cross-
platform Native File Dialog (NFD)[39] library. It is important that I allow the
user to load and save terrain files from the program. I will also need file
dialogs to load and save heightmap's.

The image above shows the drop-down menu created using ImGui, which will allow
the user to open and save files.

Module: FC6P01 Final Project Student ID: 15021826

25

The image above shows the file dialog working, with all necessary extensions in
place. The user also has the option to add their own extension(s) to the extension

list in the bottom right corner.

Memory Management

I need my game engine to handle memory efficiently and want to have
control over allocations and de-allocations. This is so I can keep track of
the amount of memory the terrain is using and pre-allocate memory to
further speed up the program. I also wanted all memory to have 16-byte
alignment[40] by default. This will make data transfers between the
central processing unit (CPU) and and graphics card (GPU) in sync. I can
also keep track of my memory now and output it to the screen, making
sure I have no memory leaks.

Module: FC6P01 Final Project Student ID: 15021826

26

The image above shows my own memory allocator. I store the size of the memory
being allocated also, so I can keep track of my memory allocations and de-

allocations and the overall memory my program is using.

Input Handler

Due to using a user interface (ImGui[38]) that creates a multitude of
windows, I needed to have a robust input handler in place that handles
different input contexts, depending on what window the user is in. For
example, in games such as Grand Theft Auto, different input contexts are
used throughout. The player has different input options when walking, as
opposed to when they're driving a car. I don't want the user to scroll
down using the mouse in an ImGui window, whilst also zooming in to the
terrain. To achieve versatility with user input, I implemented an ASR
(Action, State, Range) input handler[41]. This works in a similar way to the
Unreal Game Engine's[42] input system.

Module: FC6P01 Final Project Student ID: 15021826

27

The image above shows an input context I have created.

I follow the same design as the Unreal Engine.

Module: FC6P01 Final Project Student ID: 15021826

28

The ASR input handler works in two ways. First, we have the input
contexts, which store all conversion information between raw input keys
and user-defined keys. Secondly, we have an input mapper, which is
responsible for controlling what happens when a specific key is triggered.

User Interface

I wanted a simple user interface for the user. I decided to use the already
existing ImGui user interface, as building one from scratch would have
taken a long time.

ImGui allows me to add buttons, sliders, text fields, drop-down menus,
tick boxes and much, much more. This is extremely useful to me, as the
user interface will be the most important aspect of my terrain generation
tool. I want the user to have a stress-free experience, without any lag or
crashes, as well as having a simplistic and clean looking UI to work with.

Module: FC6P01 Final Project Student ID: 15021826

29

The image above shows my engine currently. The UI is working well, however I still
need to modify it to my liking.

Frustum Culling

I am beginning to implement optimization techniques now, in preparation
for rendering the terrain. Frustum Culling[10] will work extremely well
with all of the other terrain optimization techniques I have mention in
this report.

Module: FC6P01 Final Project Student ID: 15021826

30

The image above shows completed source code of my Frustum Culling class. Unit
tests have already been completed and it speeds up rendering and game updates

massively.

Source Code and Documentation

To allow for fast documentation to be generated, I am using a software
called Doxygen[43]. Doxygen generates full documentation automatically,
based on the comments written in your code. I am commenting all of my
code as I develop my project and will provide full documentation and
source code once fully complete.

As this project will eventually be showcased on my professional portfolio,
I am determined to have it fully documented. This will also help future
game developers re-create and possibly further expand what I have
developed.

Module: FC6P01 Final Project Student ID: 15021826

31

The image above is a screenshot of my current documentation. This image shows
my File Manager class information.

The image above shows further documentation on my File Manager class. I explain
how to initialize and shutdown the object correctly and how to load and save files

using my File Manager.

Module: FC6P01 Final Project Student ID: 15021826

32

Challenges
Thus far into development my challenges have been quite minimal and I
put this down to the level of research I done last year – I had already
faced most challenges prior to commencing development of this
software.

One of the biggest challenges I have faced and continue to face is
optimization. Usually, I build a game without optimization in mind as
previously I have made games that are fairly small. However, as you start
uploading larger models, especially terrain, combined with extensive
graphic effects (for example, normal maps), optimization does become a
massive issue.

Thus far I have managed to keep my software extremely fast and still
obtain a great frame rate (upwards of 3000 frames per second). In the
past I have tackled the problem of optimization with frustum culling[10]
only. I am hoping that the optimization techniques I have discovered and
covered in this report will further increase render and update times. I am
constantly doing unit tests and keep track of my frame rate.

Creating dynamic data in programming is fairly difficult. This becomes a
pain when you want to give the user as much control as possible. I had
the issue where I wanted the user to be able to have full control over file
management. They would be able to create custom extensions, which
they could then link to their own custom parser. All their extensions
would be saved to a file and be re-usable. This would work nicely with
the file dialog I have in place. Unfortunately, after two months of
research in this area, I had to give up as it was far too time-consuming to
carry on. I did discover a design pattern that would have made this
possible, known as the Policy Based design pattern[44], but in the end I
decided it was not worth the hassle and not entirely necessary. I have
since implemented something simpler. The user can create their own
extension names, but must use the parsers I have provided only.

I am using a user interface (UI) library known as ImGui[38]. It is a very light-
weight library and looks quite polished. However, there is absolutely no

Module: FC6P01 Final Project Student ID: 15021826

33

documentation for it online and so I face a constant struggle trying to
figure out how it works. To tackle this I have started experimenting with
all its features and keep notes once I discover what something does. This
has made me realise even more how important it is to have full,
completed documentation for my project.

Time Management
I am constantly tracking my progress by keeping development logs,
diaries and bug reports. I have a list of key dates where I must complete
certain tasks by. I find this is the best way to meet personal deadlines and
it keeps me focused.

In all honesty, I generally do not use Gantt charts, and have created one
primarily for this report. This chart outlines my actual development
timeline, which is stuck to my massive notice-board above my desk.

If I ever fall behind with my work, I prioritise the most important tasks
first. If I spend too much time on a specific task, I will leave it and come
back to it later. As long as I complete the core tasks, the additional
features can follow at a later date as they are not as important. I aim to
have a finished project, even if it is slightly basic. I can always further
develop it at a later date.

Module: FC6P01 Final Project Student ID: 15021826

34

Remedial Plan

Module: FC6P01 Final Project Student ID: 15021826

35

References
1: Wikipedia, Procedural Generation, 2018,
https://en.wikipedia.org/wiki/Procedural_generation

2: Wikipedia, Heightmap, 2018, https://en.wikipedia.org/wiki/Heightmap

3: BiteTheBytes, World Creator, 2019, https://www.world-creator.com

4: SDL, Simple DirectMedia Layer, 2018, https://www.libsdl.org/

Module: FC6P01 Final Project Student ID: 15021826

36

5: Wikipedia, Open Graphics Library (OpenGL), 2018,
https://en.wikipedia.org/wiki/OpenGL

6: Assimp, The Open-Asset-Importer-Lib, 2018, http://www.assimp.org

7: Wikipedia, Vertex (geometry), 2018,
https://en.wikipedia.org/wiki/Vertex_(geometry)

8: Wikipedia, Quadtree, 2019, https://en.wikipedia.org/wiki/Quadtree

9: RasterTek, Tutorial 5: Quad-tree's, 2016,
http://www.rastertek.com/tertut05.html

10: Rodriguez, Jorge, Math for Game Developers - Frustum Culling, 2013,
https://www.youtube.com/watch?v=4p-E_31XOPM

11: ThinMatrix, OpenGL Tutorial 54: Occlusion Queries, 2017,
https://www.youtube.com/watch?v=LMpw7foANNA

12: RasterTek, Tutorial 18: Large Terrain Rendering, 2016,
http://www.rastertek.com/terdx10tut18.html

13: Erkenbrach, Leif, Planetary Scale LOD Terrain Generation, 2014,
http://leifnode.com/2014/04/planetary-scale-lod-terrain-generation

14: Hong, K, Multi-threaded Programming with C++ - Part A, 2015,
https://www.bogotobogo.com/cplusplus/multithreaded4_cplusplus11.ph
p

15: Autodesk, Maya, 2019,
https://www.autodesk.co.uk/products/maya/overview

16: ThinMatrix, OpenGL 3D Game Tutorial 29: Mouse Picking, 2015,
https://www.youtube.com/watch?v=DLKN0jExRIM

17: Grant, W. Shane and Voorhies, Randolph, Cereal, 2017,
https://uscilab.github.io/cereal/

Module: FC6P01 Final Project Student ID: 15021826

37

18: Wikipedia, Software Design Pattern, 2019,
https://en.wikipedia.org/wiki/Software_design_pattern

19: Wikipedia, Barycentric Coordinate System, 2018,
https://en.wikipedia.org/wiki/Barycentric_coordinate_system

20: Wikipedia, Normal (geometry), 2018,
https://en.wikipedia.org/wiki/Normal_(geometry)

21: Wikipedia, UV Mapping, 2018,
https://en.wikipedia.org/wiki/UV_mapping

22: Red Eclipse, Blendmap, 2016, https://redeclipse.net/wiki/Blendmap

23: OpenGL-Tutorial, Tutorial 13: Normal Mapping, 2017,
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-13-
normal-mapping

24: Wikipedia, Finite Difference Method, 2018,
https://en.wikipedia.org/wiki/Finite_difference_method

25: Chernikov, Yan, Ep.9: Ultra-Fast Batch Renderer, 2015,
https://www.youtube.com/watch?reload=9&v=ImtWD_9OAeY

26: Wikipedia, Shader, 2018, https://en.wikipedia.org/wiki/Shader

27: Wikipedia, Reference Counting, 2018,
https://en.wikipedia.org/wiki/Reference_counting

28: Wikipedia, Smart Pointer, 2018,
https://en.wikipedia.org/wiki/Smart_pointer#shared_ptr_and_weak_ptr

29: Wikipedia, Portable Network Graphics, 2019,
https://en.wikipedia.org/wiki/Portable_Network_Graphics

30: ThinMatrix, OpenGL 3D Game Tutorial 37: Procedural Terrain, 2016,
https://www.youtube.com/watch?v=qChQrNWU9Xw

Module: FC6P01 Final Project Student ID: 15021826

38

31: ThinMatrix, OpenGL 3D Game Tutorial 22: Terrain Collision Detection,
2014, https://www.youtube.com/watch?v=6E2zjfzMs7c

32: McRae, Graeme, Barycentric Coordinates, Areal Coordinates, 2012,
http://2000clicks.com/MathHelp/GeometryTriangleBarycentricCoordinat
es.aspx

33: Wikipedia, Serialization, 2018,
https://en.wikipedia.org/wiki/Serialization

34: Wikipedia, JSON, 2019, https://en.wikipedia.org/wiki/JSON

35: Wikipedia, XML, 2019, https://en.wikipedia.org/wiki/XML

36: Wikipedia, Binary Number, 2018,
https://en.wikipedia.org/wiki/Binary_number

37: Wikipedia, Data-Driven Programming, 2018,
https://en.wikipedia.org/wiki/Data-driven_programming

38: Cornut, Omar, ImGui, 2016, http://www.miracleworld.net

39: Labbe, Michael, Native File Dialog, 2017,
https://github.com/mlabbe/nativefiledialog

40: Wikipedia, Data Structure Alignment, 2018,
https://en.wikipedia.org/wiki/Data_structure_alignment

41: Lewis, Mike, Designing a Robust Input Handling System for Games,
2013, https://www.gamedev.net/articles/programming/general-and-
gameplay-programming/designing-a-robust-input-handling-system-for-
games-r2975

42: Epic Games, Unreal Engine, 2019, https://www.unrealengine.com

43: Heesch, van Dimitri, Doxygen, 2018, http://www.doxygen.nl

44: Wikipedia, Modern C++ Design, 2018,
https://en.wikipedia.org/wiki/Modern_C%2B%2B_Design

Module: FC6P01 Final Project Student ID: 15021826

39

Alexandrescu, Andrei, Modern C++ Design: Generic Programming and
Design Patterns Applied, 2001, Addison Wesley

Chernikov, Yan, The Cherno Project Series, 2016, Self-published
www.youtube.com/TheChernoProject

De Vries, Joey, Learn OpenGL, 2015, Self-published
http://learnopengl.com

Mitchell, Shaun, SDL Game Development, 2013, Packt Publishing Limited

RasterTek, DirectX 11 Terrain Tutorials, 2016, Self-published
http://www.rastertek.com

Module: FC6P01 Final Project Student ID: 15021826

http://www.rastertek.com/
http://learnopengl.com/
http://www.youtube.com/TheChernoProject

	Introduction
	Project Concept
	Project Goal

	Aims and Objectives
	Project Aims
	Project Objectives

	Deliverables
	Prioritised deliverables
	Additional features

	Background
	Work to date
	Past Research

	Development
	Challenges

	Time Management
	Remedial Plan
	References

