Flashlight

*Not real game footage. Example inspiration. Credits: www.moddb.com/games/forsaken-soul

Game Desigh Document
By Kim Kane

Course: Graphics and Imaging Date: 17" January 2018 Student ID: 15021826

TaADIE Of CONEONTS .. euiuinrenesrsrnrnrnrararnsarasasssasnsasesssesnsnssssssssssnsnsssasnsssnsnsasnsnse

L] o Yo 11T 1 T'e T o TP 3
Theme, Setting and GENIE..........oooiii i 3
Brief Project DESCIIPLON..........ooo i 3
PrOJECT SCOPE.....eei e e e e —aa e 3

StOry @and Gam@PIay............iiiiiiiii i aaaa 4
1 (0] PP PP PP PPP TR 4
€= 03 TT o] = PP 5
Core Gameplay MECIHANICS.........ccoiiiiiieicc bbb e e e e e e e e e eaaa e eeesaaaass 6

Y [oYY7=T 0 g1 o) SO RP 6
(070]|1=Tox 11 o N1 1T 4 1= TSP UPPPP 6
o] g] (=Y = SRR 6
B =T =1L o DO PTURRRN 6
@70 11157 o] o I PSSR 6

INFIUBNICES ...ttt e e e e e e et e et e e e e e et e e et e e et e e e e eeannns 7
Elder Scrolls : Skyrim (3D open-world game)..........cccoiiiiiiiiiiiiiiieeeeeecee e 7
Horizon Zero Dawn (3D RPG).. ..o 8
Myst: Masterpiece Edition (3D PUZZIE aME).........uuceiiiiiiiii e 9
Outlast (3D ©SCAPE GAME)......eeiiiiiiiiiiiiee ettt e e et e e e e e et e e e e abbe e e e e e e e nnreeeeeaaanns 10

2D Assets Needed. ..o 11
LIS 11
HeIghtmap data........oooi s 11
TN YZ= o | (o] Y28 11
014 00) PP 11
(101 {=To] £ TR 11

3D ASSets Needed. ... 11
NN PSPPSR 11
N7 o] 0= o | 11

SOUNM. ...ttt e e ettt e e e e e e e e e e et ettt e e eebaa e aeeeattaaaaaernaeanaaaaes 12
TREME TUNC....cceeieeeee ettt ettt e e e e e e e e e e e e e e s e e e e e e eeeennns 12
Character MOVEMENL.... ..o e e et e e e e et e e e e e erta e e anneees 12
[F= 1] 0] e | o ST SOOPPPRPPRR 12
L0 1= = 12
1 5 PRSP 12
AMDbIeNt SOUNA (IN=QAME).....uuuuiiiii i e e e e et e e e aaa s 12

85 o= T L= PR 13
=T o1 T | o | PP 13

0o T - S UU 14
Character Scripts (Camera Movement/INPUL).............eeeiiiiiiiiiiiiiie e 14
Transform Hierarchy & Game Objects SCriptS.......cccceeiiiiiiiiiiiicceee e, 15

BiblIOGrapRyottt eeeeee 18

SUMMANY ...t e 19

Course: Graphics and Imaging Date: 17" January 2018 Student ID: 15021826

Introduction

Theme, Setting and GeNre..... ..o iieiieeiircrrre s e e s s ra e e s e rnnaeens
Flashlight is a 3D first person open-world horror survival game. It is set in a
dark forest, where the player is surrounded by trees, monsters and collectible
items. The theme is built around sleep paralysis and the struggles and strifes of
a games developer.

Brief Project DeSCription.......ccieeeiieiiiciirec s s s rr s s rea e s e e s e s smm e emnas
Flashlight is a 3D open-world horror survival game, explored from a first-
person camera view (the player). The player has to work their way through the
world (forest) and find clues in order to survive. Each clue (which will be written
on a piece of paper, torn from a diary), has a puzzle the player must solve in
order to find the next piece of paper. The player is equipped with a flashlight,
to help them see through the heavy dark fog in the forest. They must stealth
through the game dodging monsters, otherwise they will be chased by the
monsters. The game ends when the player finds all the torn pieces of paper
from the diary, and finds the key to the ‘hidden’ cabin in the woods.

g oY =Yt QY oo o1
| believe the game will take roughly three months to make, with a personal
deadline of 1** May 2018.

Course: Graphics and Imaging Date: 17" January 2018 Student ID: 15021826

Story and Gameplay

The main story will be based around sleep paralysis - the scary feeling of being
conscious, but unable to move. It is during these early stages of sleep (known
as REM) that a person begins to conjure up images in their mind, believing that
they are real. The player is succumb to sleep paralysis and is in fact dreaming -
trying to make sense of the fear they are feeling. They have the feeling of being
trapped in a permanent nightmare. This plot twist is unbeknown to the player
until the end of the game.

The player “wakes up” in a dark forest, surrounded by trees and small hills.
Their vision is distorted, due to the heavy fog surrounding them. The player will
journey through the hilly terrain in search for a way out, trying to escape this
nightmare.

A 2D Task pop-up window will appear - alerting them on what they need to do.
The first task will be to find a flashlight. This will aid them in exploring the
map, allowing them to see through the thick haze of fog. Upon finding the
flashlight, the next task will appear - advising them to find clues to find out
where they are, what is going on, etc.

It is during this time the player will begin to explore the map in-depth, looking
for clues. They will come across pieces of paper torn from a diary - dotted all
over the map. Each page they find has a clue on where to find the next page.
The player has to find all the pages of the diary before they can progress to the
next stage of the game.

However, in their hunt for the clues, they will come across many monsters -
called “Nightmares”. The player must stealth their way through these monsters
and not be seen. They must remember to switch off their flashlight while doing
so. If the monsters see the player, they will chase the player, until they reach
their 'world boundary', where they will stop. However, the monsters will be fast,
and so the player will naturally want to avoid them or risk losing the game.

Upon being hit by a monster, the screen will be covered in a reddish tint to
reflect the players current health. The more red the screen is, the closer they
are to dying.

Upon finding all the pages of the diary, the final page will lead the player to a
hidden area of the forest - where the cabin key is located. Only when the player
finds this cabin key does the cabin then appear at a random location in the

Course: Graphics and Imaging Date: 17" January 2018 Student ID: 15021826

forest. Once they have found the cabin they enter it safely and that is when
their sleep paralysis ends and they wake up.

As well as the main plot twist of the player being some-what asleep and
dreaming - there is another plot twist upon them completing the game.

They find out that the diary pages they were dreaming about belonged to them
- they contained notes on a current game they were developing, trying to think
of new ideas.

The game is meant to take the player through the psychological game
development process, start to finish of what it is like developing a game. The
nightmares are metaphoric for the obstacles the game developer faces - losing
sleep over bugs or deadlines, or fear of not being successful (which can
sometimes lead to sleep deprivation and then sleep paralysis) and racking their
brain to come up with new, original ideas, making notes in their scrapbook or
diary.

The cabin imitates the final deadline - finally completing the game.

LT 1 4 =Y o -

The player will use either a PS4 controller or the mouse and keyboard on a PC
to move. The current options I'd like to make available to them are: toggling the
mini-map on or off, stealth mode, flashlight on/off and menu settings. The
player can rotate their view and | would also like to have a 'zoom in/out' option.
Their will be a mini task window that pops up with the players current task,
which again can be toggled on or off. They will have an inventory that will store
all of the diary pages they have collected within it, allowing them to revisit diary
pages if they have forgotten the clue. There will be checkpoints throughout the
game that will keep track of the players progress automatically.

Course: Graphics and Imaging Date: 17" January 2018 Student ID: 15021826

Core Gameplay Mechanics.......ceueiieiiieiiic i rre e rre e rr e s e e e s

Movement

The player can either use a PS4 controller or a PC keyboard and mouse to move
around and rotate their view. They will also be able to ‘stealth’ (crouch), to hide
from monsters, as they will not be able to fight them.

Collecting items

The player will be able to collect items by using the mouse, by hovering over
the item and then clicking on it (the mouse cursor will change its icon, to let the
player know this item can be picked up). The PS4 controller will work in the
same way. The items will be added to the players inventory, and then the player
can view these items by accessing their inventory.

Monsters
The monsters will be controlled by means of the A* pathfinding algorithm. They
will ‘chase’ the player, if the player gets too close and isn’t in stealth mode.

Terrain

The open-world terrain will be generated using a height map, therefore
allowing the terrain to be all different heights. Multi-texturing will also be
implemented.

Collisions

Sloped collision will need to be implemented for the terrain. | have come across
a few references that explain this in detail (see Bibliography section), however
will need to research this further. Due to the game having sloped terrain, | will
probably be using sphere bounding boxes for my monsters and items.

Course: Graphics and Imaging Date: 17" January 2018 Student ID: 15021826

Y 2 L= o=

Looking on to the mountains in Skyrim - subtle fog and blur effects as objects
get further away

Elder Scrolls : Skyrim (3D open-world game)

Skyrim is my inspiration for the open-world terrain. The terrain has multi-
texturing and is of varying levels, the most impressive of which is the
mountains, which the player can climb up (it takes a long time), it generates the
feeling of mystery within the game, wanting to explore every area to find what
is hidden within.

Course: Graphics and Imaging Date: 17" January 2018 Student ID: 15021826

& - s Vgl |

- o - ¢ L] . t“' F)

& = 3 +5 e
E = i im f R 1)
sy P " h A
a3 " s " ,-i I; -

The main character, Aloy, stealthi

ng around the monsters in the distance

Horizon Zero Dawn (3D RPG)

Horizon is probably best known for their monsters being machines, that the
player either hunts down or stealth’s through. As there are so many monsters,
each stronger than the last, it makes the player want to stealth, as opposed to
fighting them. Trying to fight the monsters in the game takes patience and skill
and so the player automatically feels apprehensive when they approach an area
littered with strong monsters. This feeling of apprehension within the player is
what | want them to experience when they run into a group of monsters in the
game.

Course: Graphics and Imaging Date: 17" January 2018 Student ID: 15021826

consfruction nofes in anoffier
Journal. 1 do nof vndersfand fhe B
iy mysfories of tis wertd S
1 trust 1 will discover (ggica[-
ansuRrs Jo iy quesions. e

eeling fat ma "
gﬁfd can be %}ag in
anofher age fo which prae
fravel .saf: BuU‘Jr muﬂa/;emf
Jfﬂ‘!ﬂgf accepf phis wor(d s
mgsfme.f and [ake f:w'de in my
accomplishmonts.

One of the many puzzles found in the game showing some piano keys that
needed to be pressed in order to find another clue. However it comes with a
note, which you also have to pay attention to

Myst: Masterpiece Edition (3D Puzzle game)

Myst is an extremely old game that not many have heard of. | played this game
when | was younger and it was the first serious puzzle game | ever played. You
are on an island, which connects to other islands, and you have to work your
way through each island to find clues. These clues have a puzzle on them that
you must solve to find the next clue. This is the main influence in my game -
the player will have to find the clue, solve the puzzle and then find the next
clue. The final clue leads them to the end of the game.

Course: Graphics and Imaging Date: 17" January 2018 Student ID: 15021826

A dark corridor in Outlast, showing eerie lighting effects

Outlast (3D escape game)

Outlast is a horror game, set in an old run-down asylum that the player must
escape. Again, the player must find clues (blue documents) dotted around the
asylum, dodging the monsters in the process. The Player cannot fight back and
has nothing but a camcorder on them. This game influenced me because of the
FP camera they use, and the lighting effects used - projecting a dark ambient
light over every corridor to give the game a scary vibe. The camcorder is what
inspired me to equip the player with with a flashlight, hence the name of my
game.

Course: Graphics and Imaging Date: 17" January 2018 Student ID: 15021826

2D ASSES NEOAAA. ... ueuereerersrerarararnesesararnsnsasarsrsssasassssssnsssnsnssnsnsasasasnnsnnns

Textures
* Tiled Environment Textures - grass, rocks, dirt
* Menu backgrounds
e Buttons

Heightmap data
* A 2D grayscale image of a heightmap, custom made or downloaded

Inventory
« A HUD inventory and task window pop-up

Skybox
* A 2D cube map image to represent the sky

Cursors
* Unique cursor icons used when collecting items

3D ASSETS NECAEA. . .ururrirerernrareerarnrsssarararassesssarsssssassssssssssnsnssssnsasasasnnsnnns

NPC
* Monster - “Nightmares” - A 3D animated model of a shadow-like
monster

Environment
* A textured cabin model
* Trees
* Transparent Fern/grass

Course: Graphics and Imaging Date: 17" January 2018 Student ID: 15021826

Theme tune
« Milla Jovovich - Flashlight
» Pitch Perfect 3 - Flashlight

Character movement
* Sound to imitate someone walking on grass

Flashlight
* 'Click' sound when turning on and off

Monster
* Sounds when attacking and stationary

HUD

* Sounds when entering/exiting the 2D HUD, clicking buttons, closing the
mini-map or task popup windows

Ambient sound (in-game)
« Wind, distant sound of eerie noises

Course: Graphics and Imaging Date: 17" January 2018 Student ID: 15021826

) 1 1 Lo L= S

Flashlight
The flashlight will be attached to the camera (player) and follow the cameras

position and direction. Below is some sample code of how the lighting will be
organised in a shader file:

struct BaselLight

{
vec3 color;
float intensity;

}i

struct PointLight

{
BaselLight baselLight;
Attenuation attenuation;
vec3 position;
float range;

}i

struct SpotLight

{
PointLight pointLight;
vec3 direction;
float margin;

i
The PointLight will derive from a BaseLight, and the SpotLight will derive from
the PointLight, within the engine code. A spotlight object will then be created

and its transform position in the 3D scene will mimic that of the camera/player.

| have not yet built shaders to handle fog, terrain, multi-textures or gaussian
blur. However, these will be further shaders | will use.

Course: Graphics and Imaging Date: 17" January 2018 Student ID: 15021826

Character Scripts (Camera Movement/Input)

void Camera::Move(Vector3f direction, float amount)

{ m_position = m_position.Add(direction.Multiply(amount));

}

void Camera::RotateHorizontal(float angle)

{
Vector3f horizontalAxis = s_defaultVerticalAxis.Cross(m_forward).Normalized();
m_forward = m_forward.Rotate(horizontalAxis, angle).Normalized();
m_up = m_forward.Cross(horizontalAxis).Normalized();

}

void Camera::RotateVertical(float angle)

{
Vector3f horizontalAxis = s_defaultVerticalAxis.Cross(m_forward).Normalized();
m_forward = m_forward.Rotate(s_defaultVerticalAxis, angle).Normalized();
m_up = m_forward.Cross(horizontalAxis).Normalized();

}

Above is the main functions used to move and rotate the camera/player. | am
using directional vectors for the camera/player movement. At present, | am
doing all transformations of the camera/player using euler angles. Due to the
problems with gimble lock, | will later use quaternions for my camera/player
movement. Some examples of how these functions can be used for keyboard,
mouse and PS4 controls are below:

Rotating the camera left using the left mouse button
if (Input::Instance()->MouseButtonPressed(SDL_BUTTON_LEFT))
{

m_camera->RotateVertical(-InputConstants::RotateSpeed);

}

Moving the camera left using the left controller axis
m_camera->Move(m_camera->GetLeft(), -Input::Instance()->GetControllerLeftAxis().x);

Moving the camera left using the left arrow key on the keyboard
if (m_keys[SDL_SCANCODE_LEFT])
{

m_camera->Move(m_camera->GetLeft(), InputConstants::Speed);

}

Course: Graphics and Imaging Date: 17" January 2018 Student ID: 15021826

Transform Hierarchy & Game Objects Scripts

GameObject* GameObject::AddChild(GameObject* child)

{
m_children.push_back(child);
child->m_localTransform.SetParent(&m_localTransform);
return this;

}

The AddChild() function is the most important function in the transform
hierarchy. It allows us to attach objects to other objects, in its simplest
explanation, and means we can transform around those objects, instead of in
local 3D space. An example of how the function is used is below:

rootObjectExample = new GameObject(Vector3f(-1.5f, -2.0f, 10.0f), meshFontExample);

rootObjectExample->AddChild(gameObjectLaraExample = new GameObject(Vector3f(-10.0f,
-1.0f, 0.0f), meshLaraExample));

We first create a root game object, which acts as an origin in our 3D world and
will usually be at position 0, 0, 0. Then we add all game objects to this root
object by means of the AddChild() function. Effectively, we now know who the
parent object of the child is, and this root parent object will be responsible for
updating and drawing all its children. But, we can go further than that:

gameObjectLaraExample->AddChild(gameObjectCubeExample = new GameObject(Vector3f(-5.0f,
-0.4f, 0.0f), meshCubeExample));

We can add children objects to other children objects. This child object will now
be the parent of the other child object. In doing transformations this way, we
can now do the following:

gameObjectLaraExample->GetTransform()->SetLocalPosition(Vector3f(-10.0, 1.0, move),
true);

gameObjectCubeExample->GetTransform()->SetLocalPosition(Vector3f(-5.0f, -0.4f, 0.0f),
true);

We set the local position of the object, and decide whether or not we want to
position this relative to the parent position by passing in 'true' or 'false'. So,
rather than automatically following the parents transformations, we now have
the ability to toggle this on or off whenever we want. True = follow parent,
False = transform around your own axis in the 3D world.

Course: Graphics and Imaging Date: 17" January 2018 Student ID: 15021826

How this function looks within the Transform class is as follows:

void Transform::SetLocalPosition(const Vector3f& position, bool setRelativeToParent)

{

m_positionSetRelative = setRelativeToParent;

m_position = position;

if (setRelativeToParent) { SetRelativeToParentPosition(); }
}

If we want to set the local position of the object relative to the parent, then we
call the function SetRelativeToParentPosition(), otherwise, the position of the
object will be the position we pass in to the function and the object will position
itself relative to the origin only - 0, 0, O (the center of our world).

void Transform::SetRelativeToParentPosition() const

{

GetParentMatrix().Transform(m_position);

}

The SetRelativeToParentPosition() function is rather simple - it takes the parent
matrix and basically multiplies it (in simplistic terms) by the position vector, by
use of the Transform() method.

The last thing we can do, is choose to change the parent any time we want to,
by use of the SetParent() function:

void Transform::SetParent(Transform* parent) { m_parent = parent; }

There is much more happening in the Transform hierarchy, such as
optimization, dirty flags and recursive functions, however this would take
around 10 pages to explain and full explanations and comments can be found
within the source code.

Why this is useful in the game, will be when | want to make the monsters follow
the player for a period of time. | can now do this in very few lines of code,
passing in a flag. Some pseudocode of how it can eventually work:

if (PlayerNearMonster)

{
monster->SetParent (player) ;
monster->FollowParent (true) ;

}

else { monster->SetLocalPosition(); }

Course: Graphics and Imaging Date: 17" January 2018 Student ID: 15021826

In terms of the game objects, as | mentioned above, the root object is
responsible for updating and drawing all of the game objects. The game objects
are stored in a vector and | iterate over them every draw and update call.

bool GameObject::Draw(Camera* camera)

{
m_shader.Bind();
m_shader.UpdateAllUniforms(m_localTransform, camera);
m_mesh.Render();
for (std::vector<GameObject*>::iterator i = m_children.begin(); i != m_children.end(); +
+1)
{
(*i)->Draw(camera);
}
return true;
}

And upon deletion of the root object, all other objects get deleted too.

The other scripts are available in the source code. The scripts are more engine-
based rather than game-specific and so | haven't added them here. | felt the
above functions were the most important to show in what | am trying to achieve
and the tools that will enable me to do so.

Some of the other scripts | have written are: Terrain, Mesh and Texture classes,
Manager classes, ObjLoader class for loading in the models, GameState
hierarchy, Shader and Buffer classes, and finally the maths classes.

Scripts | will be writing going forward are: animation, proper terrain and
heightmap generation, monster movement (A* pathfinding algorithm, the
monster will chase the player, but I still don't want it walking through trees!),
multiple shaders, possibly a rendering engine, a binary file reader and writer for
the obj files, possibly multi-threading for cut-scenes (if | can find some
royalty-free ones), an Inventory class, collectible objects and a 2D Interface
class. This isn't an extensive list, but these are the most important scripts | will
need to write for the time-being.

Course: Graphics and Imaging Date: 17" January 2018 Student ID: 15021826

3]] 1T Yo | =1 o1 1)/

| have learnt a lot in doing this project, primarily 3D maths and lighting
formulas. Writing the maths classes was the best thing | have ever done in
terms of programming, as it really made me understand everything so well.
However, | would not have been able to do it without the following references |
found in my research:

Lighting & Shaders - YouTube

ThinMatrix - 3D Java Game Development Videos (incl. Terrain and height map)
TheBennyBox - 3D Game Engine Development, Physics Engine development,
OpenGL Graphics Development

Websites
www.lighthouse3d.com/tutorials/glsl-12-tutorial/point-light-per-pixel
www.tomdalling.com/blog/modern-opengl/06-diffuse-point-lighting
www.mbsoftworks.sk/index.php?page=tutorials&series=1&tutorial=16
http://pyopengl.sourceforge.net/context/tutorials/shader_5.html
www.lighthouse3d.com/tutorials/glsl-tutorial/directional-lights-per-pixel
www.lighthouse3d.com/tutorials/glsl-tutorial /directional-lights-per-vertex-ii
JOEY!! a.k.a learnopengl.com

OBJ Loading

Github example codes - A number of these | looked at for reference and took
ideas from the ones | thought were the cleanest and simplest

Book - OpenGL Insights, by Patrick Cozzi and Cristophe Riccio

C++, OpenGL - YouTube

TheChernoProject - Macros, OpenGL buffers, handling OpenGL errors, C++
const correctness, 2D Game Engine Development, Sparky Engine
MakingGamesWithBen - C++, strings (for file loading)

Jamie King - OpenGL, camera, transformations, buffers, lighting effects, 3D
maths

TheNewBoston - C++ tutorials

Other References (maths, optimization, etc.) - YouTube

TheNewBoston - Geometry, algebra and physics tutorials

TheBennyBox - 3D maths & transform hierarchy/scene graph, optimization
TheChernoProject - 3D maths (Sparky Engine)

Course: Graphics and Imaging Date: 17" January 2018 Student ID: 15021826

Miscellaneous
Github

Stack overflow
GLM library

To sum up, | hope you are as excited as | am about seeing the game in its final
stages. | have learnt a vast amount of things in such a short period of time and
| am looking forward to putting this knowledge in to making something,
hopefully, really amazing. Supporting documents, such as: a UML diagram, my
personal Bug Report and Development Log, can be found in the same file as
this GDD. Thanks for reading!

Course: Graphics and Imaging Date: 17" January 2018 Student ID: 15021826

	Introduction
	Theme, Setting and Genre...
	Brief Project Description..
	Project Scope..

	Story and Gameplay
	Story...
	Gameplay..
	Core Gameplay Mechanics...
	Movement
	Collecting items
	Monsters
	Terrain
	Collisions

	Influences...
	Elder Scrolls : Skyrim (3D open-world game)
	Horizon Zero Dawn (3D RPG)
	Myst: Masterpiece Edition (3D Puzzle game)
	Outlast (3D escape game)

	2D Assets Needed...
	Textures
	Heightmap data
	Inventory
	Skybox
	Cursors

	3D Assets Needed...
	NPC
	Environment

	Sound...
	Theme tune
	Character movement
	Flashlight
	Monster
	HUD
	Ambient sound (in-game)

	Shaders...
	Flashlight

	Code...
	Character Scripts (Camera Movement/Input)
	Transform Hierarchy & Game Objects Scripts

	Bibliography..
	Summary...

